5,632 research outputs found

    Dark state lasers

    Full text link
    We propose a new type of laser resonator based on imaginary "energy-level splitting" (imaginary coupling, or quality factor Q splitting) in a pair of coupled microcavities. A particularly advantageous arrangement involves two microring cavities with different free-spectral ranges (FSRs) in a configuration wherein they are coupled by "far-field" interference in a shared radiation channel. A novel Vernier-like effect for laser resonators is designed where only one longitudinal resonant mode has a lower loss than the small signal gain and can achieve lasing while all other modes are suppressed. This configuration enables ultra-widely tunable single-frequency lasers based on either homogeneously or inhomogeneously broadened gain media. The concept is an alternative to the common external cavity configurations for achieving tunable single-mode operation in a laser. The proposed laser concept builds on a high-Q "dark state" that is established by radiative interference coupling and bears a direct analogy to parity-time (PT) symmetric Hamiltonians in optical systems. Variants of this concept should be extendable to parametric-gain based oscillators, enabling use of ultrabroadband parametric gain for widely tunable single-frequency light sources

    Enhanced Trellis Coded Multiple Access (ETCMA)

    Full text link
    We propose an enhanced version of trellis coded multiple access (TCMA), an overloaded multiple access scheme that outperforms the original TCMA in terms of achieved spectral efficiency. Enhanced TCMA (ETCMA) performs simultaneous transmission of multiple data streams intended for users experiencing similar signal-to-noise ratios and can be employed both in the uplink and in the downlink of wireless systems, thus overcoming one of the main limitations of TCMA. Thanks to a new receiver algorithm, ETCMA is capable of delivering a significantly higher spectral efficiency. We show that ETCMA approaches the capacity of the Additive White Gaussian Noise channel for a wide range of signal-to-noise ratios.Comment: 5 pages, 5 figure

    Glass Transition in a Two-Dimensional Electron System in Silicon in a Parallel Magnetic Field

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both the glass transition density ngn_g and ncn_c, the critical density for the MIT, increase with B such that the width of the metallic glass phase (nc<ns<ngn_c<n_s<n_g) increases with B. At higher B, where the 2DES is spin polarized, ncn_c and ngn_g no longer depend on B. Our results demonstrate that charge, as opposed to spin, degrees of freedom are responsible for glassy ordering of the 2DES near the MIT.Comment: 4 pages, 5 figure

    Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing

    Full text link
    We propose and demonstrate localized mode coupling as a viable dispersion engineering technique for phase-matched resonant four-wave mixing (FWM). We demonstrate a dual-cavity resonant structure that employs coupling-induced frequency splitting at one of three resonances to compensate for cavity dispersion, enabling phase-matching. Coupling strength is controlled by thermal tuning of one cavity enabling active control of the resonant frequency-matching. In a fabricated silicon microresonator, we show an 8 dB enhancement of seeded FWM efficiency over the non-compensated state. The measured four-wave mixing has a peak wavelength conversion efficiency of -37.9 dB across a free spectral range (FSR) of 3.334 THz (\sim27 nm). Enabled by strong counteraction of dispersion, this FSR is, to our knowledge, the largest in silicon to demonstrate FWM to date. This form of mode-coupling-based, active dispersion compensation can be beneficial for many FWM-based devices including wavelength converters, parametric amplifiers, and widely detuned correlated photon-pair sources. Apart from compensating intrinsic dispersion, the proposed mechanism can alternatively be utilized in an otherwise dispersionless resonator to counteract the detuning effect of self- and cross-phase modulation on the pump resonance during FWM, thereby addressing a fundamental issue in the performance of light sources such as broadband optical frequency combs

    Metal-insulator transition and glassy behavior in two-dimensional electron systems

    Full text link
    Studies of low-frequency resistance noise demonstrate that glassy freezing occurs in a two-dimensional electron system in silicon in the vicinity of the metal-insulator transition (MIT). The width of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility (low-disorder) samples. The glass transition is manifested by a sudden and dramatic slowing down of the electron dynamics, and by a very abrupt change to the sort of statistics characteristic of complicated multistate systems. In particular, the behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: Contribution to conference on "Noise as a tool for studying materials" (SPIE), Santa Fe, New Mexico, June 2003; 15 pages, 12 figs. (includes some low-quality figs; send e-mail to get high-quality figs.

    Validation of Individual Non-Linear Predictive Pharmacokinetic Parameters in a Rabbit Phenytoin Model

    Get PDF
    Purpose: To evaluate the predictive performance of phenytoin multiple dosing non-linear pharmacokinetic model in rabbits for possible application in therapy individualization in humans.Methods: Phenytoin was intravenously administered to 10 rabbits (2 – 3 kg). Plasma concentrations were measured by high pressure liquid  chromatography (HPLC). Rabbits received 3 single phenytoin doses (11, 22 and 44 mg/kg) and plasma concentrations were fitted according to linear twocompartmental model. In all the rabbits, based on 3 different multiple doses (D1, D2, D3, range 9 – 15 mg/kg), 3 steady state plasma   concentrations (Css1, Css2, Css3, range 20 - 56mg/l) were achieved. Formultiple dosage, the non-linear parameters, Km and Vm, were calculated according to the equations: Km = (D1-D2)/[(D2/Css2)-(D1/Css1)] and Vm = D2+KmD2/Css2, and individually used to calculate Css3 =  D3Km/(Vm-D3). Predicted and measured Css3 values were compared.Results: The values for pharmacokinetic parameters after single doses were dose-dependent. The pronounced inter-individual variations in Km (extreme values 18 – 91 mg/l differed 5.5 times) and Vm (11 – 28  mg/kg/h) values were recorded. Significant correlation of predicted Css3 with the measured value for the same dose (D3) was found (r = 0.854, N = 10, p &lt; 0.01). There was no statistical difference between predicted and measured concentrations (t-dependent test = 1.074, p &lt; 0.05).Conclusion: Non-linear parameters, Km and Vm, obtained from only two steady-state concentration measurements can be successfully used to compute and achieve a particular steady-state plasma concentration and optimal dosage regimen.Keywords: Phenytoin, Rabbit, Pharmacokinetic model, Multiple dosing, Non-linear, Individualizatio

    Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Get PDF
    In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature
    corecore